An Evolutionary Programming Based Algorithm for HMM training
نویسندگان
چکیده
In this paper, we propose an evolutionary programming (EP) based algorithm for the training of hidden Markov models (HMMs), which are applied to automatic speech recognition. This algorithm (called the EP algorithm) uses specially designed operators of mutation and selection to find the HMM parameters and the number of states. In order to evaluate the recognition capability of the HMMs trained by the EP algorithm, a computational experiment is carried out using speech samples for 20 words. The results indicate that the proposed EP algorithm is a very promising tool for HMM training the EP-HMM approach achieves an average recognition rate of 97.92% and the training process requires quite a small number of iterations of the algorithm.
منابع مشابه
Pareto-based Multi-criteria Evolutionary Algorithm for Parallel Machines Scheduling Problem with Sequence-dependent Setup Times
This paper addresses an unrelated multi-machine scheduling problem with sequence-dependent setup time, release date and processing set restriction to minimize the sum of weighted earliness/tardiness penalties and the sum of completion times, which is known to be NP-hard. A Mixed Integer Programming (MIP) model is proposed to formulate the considered multi-criteria problem. Also, to solve the mo...
متن کاملShuffled Frog-Leaping Programming for Solving Regression Problems
There are various automatic programming models inspired by evolutionary computation techniques. Due to the importance of devising an automatic mechanism to explore the complicated search space of mathematical problems where numerical methods fails, evolutionary computations are widely studied and applied to solve real world problems. One of the famous algorithm in optimization problem is shuffl...
متن کاملUsing guide trees to construct multiple-sequence evolutionary HMMs
MOTIVATION Score-based progressive alignment algorithms do dynamic programming on successive branches of a guide tree. The analogous probabilistic construct is an Evolutionary HMM. This is a multiple-sequence hidden Markov model (HMM) made by combining transducers (conditionally normalised Pair HMMs) on the branches of a phylogenetic tree. METHODS We present general algorithms for constructin...
متن کاملAdaptive Rule-Base Influence Function Mechanism for Cultural Algorithm
This study proposes a modified version of cultural algorithms (CAs) which benefits from rule-based system for influence function. This rule-based system selects and applies the suitable knowledge source according to the distribution of the solutions. This is important to use appropriate influence function to apply to a specific individual, regarding to its role in the search process. This rule ...
متن کاملSpeech enhancement based on hidden Markov model using sparse code shrinkage
This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008